Well-posedness for SQG sharp fronts with unbounded curvature

نویسندگان

چکیده

Patch solutions for the surface quasigeostrophic (SQG) equation model sharp temperature fronts in atmospheric and oceanic flows. Boundedness of curvature plays an important role theoretical [F. Gancedo R. M. Strain, Absence splash singularities quasi-geostrophic Muskat problem, Proc. Natl. Acad. Sci. USA 111 (2014) 635–639] numerical [D. Córdoba, A. Fontelos, Mancho J. L. Rodrigo, Evidence a family contour dynamics equations, 102 (2005) 5949–5952; K. Scott D. G. Dritschel, Numerical simulation self-similar cascade filament instabilities system, Phys. Rev. Lett. 112 144505] study singularity formation. In this paper, we establish local well-posedness SQG low Sobolev regularity, [Formula: see text] arbitrarily small text]. This is first construction front with unbounded curvature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Error Analysis for Curvature Dependent Evolving Fronts

The evolution of a curvature dependent interface is approximated via a singularly perturbed parabolic double obstacle problem with small parameter " > 0. The velocity normal to the front is proportional to its mean curvature plus a forcing term. Optimal interface error estimates of order O(" 2) are derived for smooth evolutions, that is before singularities develop. Key ingredients are the cons...

متن کامل

Sharp Global Well - Posedness for Kdv and Modified Kdv On

The initial value problems for the Korteweg-de Vries (KdV) and modified KdV (mKdV) equations under periodic and decaying boundary conditions are considered. These initial value problems are shown to be globally well-posed in all L 2-based Sobolev spaces H s where local well-posedness is presently known, apart from the H 1 4 (R) endpoint for mKdV. The result for KdV relies on a new method for co...

متن کامل

Sharp Global Well-posedness for a Higher Order Schrödinger Equation

Using the theory of almost conserved energies and the “I-method” developed by Colliander, Keel, Staffilani, Takaoka and Tao, we prove that the initial value problem for a higher order Schrödinger equation is globally wellposed in Sobolev spaces of order s > 1/4. This result is sharp.

متن کامل

Sharp Local Well-posedness Results for the Nonlinear Wave Equation

This article is concerned with local well-posedness of the Cauchy problem for second order quasilinear hyperbolic equations with rough initial data. The new results obtained here are sharp in low dimension.

متن کامل

Sharp Well-posedness Results for the BBM Equation

The regularized long-wave or BBM equation ut + ux + uux − uxxt = 0 was derived as a model for the unidirectional propagation of long-crested, surface water waves. It arises in other contexts as well, and is generally understood as an alternative to the Korteweg-de Vries equation. Considered here is the initial-value problem wherein u is specified everywhere at a given time t = 0, say, and inqui...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Models and Methods in Applied Sciences

سال: 2022

ISSN: ['0218-2025', '1793-6314', '1793-4060']

DOI: https://doi.org/10.1142/s0218202522500610